
Frenetic: A High-Level Language for
OpenFlow Networks
Nate Foster, Rob Harrison,
Matthew L. Meola, Michael J. Freedman,
Jennifer Rexford, David Walker

11.28.2010
PRESTO 2010,
Philadelphia, PA

Background

OpenFlow/NOX allowed us to take back the network
• Direct access to dataplane hardware
• Programmable control plane via open API

OpenFlow/NOX made innovation possible, not easy
• Low level interface mirrors hardware
• Thin layer of abstraction
• Few built-in features

So let’s give the network programmer some help…

2

OpenFlow Architecture

3

Priority Pattern Action Counters

0-65535 Physical Port, Link Source/Destination/Type,
VLAN, Network Source/Destination/Type,
Transport Source/Destination

Forward
Modify
Drop

Bytes, Count

OpenFlow Switch Flow Table

Controller

Switches

Network Events
• Flow table miss
• Port status
• Join/leave
• Query responses

Control Messages
• Send packet
• Add/remove flow
• Statistics Queries

NOX

Programming Networks with NOX

4

In general, program modules do not compose
• If m yields r, and some m¶yields r¶, then (m ^m¶) does not yield (r^ r¶)

Forwarding Monitoring Access Control

Application

• Destination addressing • Transport ports • Individual MACs

Example

5

Simple Network Repeater
• Forward packets received on port 1 out 2; vice versa

1 2

Controller

Switch

Simple Repeater

6

def simple_repeater():
Repeat Port 1 to Port 2
p1 = {IN_PORT:1}
a1 = [(OFPAT_OUTPUT, PORT_2)]
install(switch, p1, HIGH, a1)

Repeat Port 2 to Port 1
p2 = {IN_PORT:2}
a2 = [(OFPAT_OUTPUT, PORT_1)]
install(switch, p2, HIGH, a2)

Priority Pattern Action Counters
HIGH IN_PORT:1 OUTPUT:2 (0,0)

HIGH IN_PORT:2 OUTPUT:1 (0,0)

NOX Program

Flow Table

1 2

Controller

Switch

Example

7

Simple Network Repeater
• Forward packets received on port 1 out 2; vice versa
• Monitor incoming HTTP traffic totals per host

1 2

Controller

Switch

with Host Monitoring

Simple Repeater with Host Monitoring

8

Repeat port 1 to 2
def port1_to_2():

p1 = {IN_PORT:1}
a1 = [(OFPAT_OUTPUT, PORT_2)]
install(switch, p1, HIGH, a1)

Callback to generate rules per host
def packet_in(switch, inport, pkt):

p = {DL_DST:dstmac(pkt)}
pweb = {DL_DST:dstmac(pkt),

DL_TYPE:IP,NW_PROTO:TCP,
TP_SRC:80}

a = [(OFPAT_OUTPUT, PORT_1)]
install(switch, pweb, HIGH, a)
install(switch, p, MEDIUM, a)

def main():
register_callback(packet_in)
port1_to_2()

Priority Pattern Action Counters
HIGH {IN_PORT:1} OUTPUT:2 (0,0)

HIGH {DL_DST:mac,DL_TYPE:IP_TYPE,NW_PROTO:TCP, TP_SRC:80} OUTPUT:1 (0,0)

MEDIUM {DL_DST:mac} OUTPUT:1 (0,0)

def simple_repeater():
Port 1 to port 2
p1 = {IN_PORT:1}
a1 = [(OFPAT_OUTPUT, PORT_2)]
install(switch, p1, HIGH, a1)

Port 2 to Port 1
p2 = {IN_PORT:2}
a2 = [(OFPAT_OUTPUT, PORT_1)]
install(switch, p2, HIGH, a2)

OpenFlow/NOX Difficulties

Low-level, brittle rules
• No support for operations like union and intersection

Split architecture
• Between logic running on the switch and controller

No compositionality
• Manual refactoring of rules to compose subprograms

Asynchronous interactions
• Between switch and controller

9

Our Solution: Frenetic

A High-level Language
• High-level patterns to

describe flows
• Unified abstraction
• Composition

A Run-time System
• Handles module interactions
• Deals with asynchronous

behavior

10

NOX

Frenetic Version

11

Static repeating between ports 1 and 2
def simple_repeater():
rules=[Rule(inport_fp(1), [output(2)]),

Rule(inport_fp(2), [output(1)])]
register_static(rules)

per host monitoring es: E(int)
def per_host_monitoring():
q = (Select(bytes) *

Where(protocol(tcp) & srcport(80))*
GroupBy([dstmac]) *
Every(60))

log = Print(“HTTP Bytes:”)
q >> l

Composition of two separate modules
def main():
simple_repeater()
per_host_monitoring()

1 2

Controller

Switch

• No refactoring of rules

• Pure composition of modules

• Unified “see every packet”
abstraction

• Run-time deals with the rest

Frenetic Version

12

Static repeating between ports 1 and 2
def simple_repeater():
rules=[Rule(inport_fp(1), [output(2)]),

Rule(inport_fp(2), [output(1)])]
register_static(rules)

per host monitoring es: E(int)
def per_host_monitoring():
q = (Select(bytes) *

Where(protocol(tcp) & srcport(80))*
GroupBy([dstmac]) *
Every(60))

log = Print(“HTTP Bytes:”)
q >> l

Composition of two separate modules
def main():
simple_repeater()
per_host_monitoring()

Frenetic Language

Network as a stream of discrete, heterogenous events
• Packets, node join, node leave, status change, time, etc…

Unified Abstraction
• “See every packet”
• Relieves programmer from reasoning about split architecture

Compositional Semantics
• Standard operators from Functional Reactive Programming (FRP)

13
Event Stream

Single Value or Event
.

Frenetic Run-time System

Frenetic programs interact
only with the run-time
• Programs create subscribers
• Programs register rules

Run-time handles the
details
• Manages switch-level rules
• Handles NOX events
• Pushes values onto the

appropriate event streams

14

NOX

NOX

Run-time System Implementation

Reactive, microflow based run-time system

15

Check
Subscribers

Check Rules

Monitoring
Loop

Stats Request

Do Actions

Install Flow

Send Packet

Update Stats
Stats In

Packets Stats

Subscribers

Rules

Flow Removed

Subscribe Register

NOX

Frenetic Program

Frenetic Run-time System

Packet InPacket Packet

Rule

Packet

Optimizing Frenetic

“See every packet” abstraction can negatively affect
performance in the worst case
• Naïve implementation strategy
• Application directed

Using an efficient combination of operators, we can
keep packets in the dataplane
• Must match switch capabilities

–Filtering, Grouping, Splitting, Aggregating, Limiting
• Expose this interface to the programmer explicitly

16

Does it Work in Practice?

Frenetic programs perform comparably with pure NOX
• But we still have room for improvement

17

Learning
Switch

Web Stats
Static

Web Stats
Learning

Heavy Hitters
Learning

Pure NOX

Lines of Code 55 29 121 125
Traffic to Controller (Bytes) 71224 1932 5300 18010

Naïve Frenetic

Lines of Code 15 7 19 36
Traffic to Controller (Bytes) 120104 6590 14075 95440

Optimized Frenetic

Lines of Code 14 5 16 32
Traffic to Controller (Bytes) 70694 3912 5368 19360

Frenetic Scalability

Frenetic scales to larger networks comparably with NOX

18

25

Hosts

0 50

Frenetic
NOX

80

60

40

20

Tr
af

fic
 to

 C
on

tr
ol

le
r (

kB
)

Memcached with dynamic membership
• Forwards queries to a dynamic member set
• Works with unmodified memcached clients/servers

Defensive Network Switch
• Identifies hosts conducting network scanning
• Drops packets from suspected scanners

Memcached

Larger Applications

19

ServersClient
get(key)
set(k,v)

a-i

j-q

r-z

a-m

n-z

Ongoing and Future Work

Surface Language
• Current prototype is in Python – to ease transition
• Would like a standalone language

Optimizations
• More programs can also be implemented efficiently
• Would like a compiler to identify and rewrite optimizations

Proactive Strategy
• Current prototype is reactive, based on microflow rules
• Would like to enable proactive, wildcard rule installation

Network Wide Abstractions
• Current prototype focuses only on a single switch
• Need to expand to multiple switches

20

Questions?

See our recent submission for more details…
http://www.cs.cornell.edu/~jnfoster/papers/frenetic-draft.pdf

21

	Frenetic: A High-Level Language for OpenFlow Networks
	Background
	OpenFlow Architecture
	Programming Networks with NOX
	Example
	Simple Repeater
	Example
	Simple Repeater with Host Monitoring
	OpenFlow/NOX Difficulties
	Our Solution: Frenetic
	Frenetic Version
	Frenetic Version
	Frenetic Language
	Frenetic Run-time System
	Run-time System Implementation
	Optimizing Frenetic
	Does it Work in Practice?
	Frenetic Scalability
	Larger Applications
	Ongoing and Future Work
	Questions?��See our recent submission for more details…� http://www.cs.cornell.edu/~jnfoster/papers/frenetic-draft.pdf �

